Stereochemical Rigidity of the Square Pyramidal W(CO)₅ Moiety During

1,2-Metallotropic Shifts in Disulphide Complexes

Edward W. Abel, Ian Moss, Keith G. Orrell,* Vladimir Šik, and David Stephenson

Department of Chemistry, The University, Exeter EX4 4QD, U.K.

N.m.r. studies of the complex $[W(CO)_5(PhCH_2SSCH_2Ph)]$ have revealed the absence of any carbonyl group scrambling accompanying the tungsten–sulphur 1,2-metallotropic shift; this implies stereochemical rigidity, on the two-dimensional ¹³C dynamic n.m.r. timescale, of the square pyramidal $W(CO)_5$ unit during these intersulphur metal commutations.

Metal carbonyl scrambling is a widespread fluxional phenomenon in organometallic chemistry, and has been extensively studied by ¹³C n.m.r. spectroscopy.^{1,2} In general, it occurs with ease in many bi-, tri-, and poly-metallic systems by a variety of mechanisms, most of which may be conveniently followed by standard dynamic n.m.r. techniques. Mononuclear systems of the type $[M(CO)_5L]$ do, however, appear to be stereochemically rigid at room temperature.¹ Nevertheless, since studies above ambient temperature have been limited by the thermal instabilities of many of the complexes, the existence of very slow high-energy carbonyl scrambling, such as occurs in $[W(CO)_5CS]$,³ cannot be discounted. We have now examined whether two-dimensional ¹³C n.m.r. exchange spectroscopy can reveal carbonyl group scrambling in a $[M(CO)_5L]$ system at a rate too slow to produce exchange broadening in its one-dimensional n.m.r. spectra.

We chose to study $[W(CO)_5(PhCH_2SSCH_2Ph)]$ since we wished to test, not simply for the existence of CO fluxionality, but also for any correlation of such fluxionality inside the $M(CO)_5$ moiety with the 1,2-metal commutation known to occur in such disulphide complexes.⁴ The complex was prepared by an established procedure,⁵ and initially studied by one-dimensional ¹H n.m.r. spectroscopy at a variety of temperatures between 323 and 353 K. The methylene region of the spectrum revealed two sharp signals (δ 3.40 and 4.20; solvent CDCl₃) at 303 K which underwent exchange broadening at higher temperatures owing to the 1,2-tungsten sulphur shift. Bandshape fittings were obtained in the usual way, and rate constants obtained (Table 1). Two-dimensional (2D) ¹H

NOESY (EXSY)⁶ spectra obtained at below-ambient temperatures extended the range over which reliable k values could be computed. The resulting value of ΔG^{\ddagger} (298.15 K) for the 1,2-shift process was 76.00 \pm 0.09 kJ mol⁻¹ which compared closely with the value of 74.2 \pm 0.02 kJ mol⁻¹ previously obtained⁴ for the related complex [W(CO)₅(Me₃SiCH₂-SSCH₂SiMe₃)].

In order to obtain 2D ${}^{13}C{}^{1H}$ EXSY spectra of [W(CO)₅(PhCH₂SSCH₂Ph)], the complex was prepared from ${}^{13}CO$ enriched hexacarbonyltungsten. Our disulphide complex contained a 27% enrichment of ${}^{13}CO$, this being assessed from the relative intensities of the individual components of

Table [W(CO)	1. Rate 5(PhCH ₂ SS	constants CH ₂ Ph)].	for	the	1,2-shift	process	ir	
	T/K	Ν	Method			<i>k</i> /s ⁻¹		
	353	1D	1D-BS ^a			80		
	343	1D	-BS		38			
	333	1D	1D-BS			15		
	323°	1D	-BS		5.0			

2D-EXSY^b

2D-EXSY

2D-EXSY

313c

303°

293°

1.82

0.51

0.154

^a One-dimensional bandshape analysis. ^b Two-dimensional exchange spectroscopy. ^c Two-dimensional ¹³C-EXSY spectra recorded at these temperatures contained *no* carbonyl cross-peaks.

the ¹³C carbonyl signals, due to singly and multiply labelled ¹³CO species (${}^{2}J_{CC} \approx 2.5$ Hz). High quality ${}^{13}C{-}{1H}$ EXSY spectra of the complex in the range 293 to 323 K consisted of diagonal carbonyl signals at δ 196.68 [¹J(¹⁸³W–¹³C) 129.5 Hz] and 200.10 [1J(183W-13C) 160.5 Hz] due to cis- and transcarbonyl groups respectively, but contained no carbonyl cross-peaks. At these temperatures the rates of the 1,2-metal shifts were appreciable (Table 1), and intense carbonyl cross-peaks would have been produced if correlated CO scrambling was occurring during the process. The absence of such cross-peaks thus showed not only that the 1,2-shift fluxion was not correlated with any metal carbonyl movement, but that the $[M(CO)_5]$ unit itself was remarkably rigid, any cis-trans-CO exchange being too slow on the 2D ¹³C dynamic n.m.r. time-scale for detection. From the conditions used to obtain the 2D EXSY spectra,⁶ it is estimated that any rate constants for CO scrambling in the temperature range 293 to 323 K would have to be $<10^{-2}$ s⁻¹ and ΔG^{\ddagger} for the process $>90 \text{ kJ mol}^{-1}$.

This result is compatible with the work of Darensbourg *et al.*^{7–9} which has established that the *cis–trans*-isomerism of selectively ¹³CO labelled complexes [M(CO)₅PR₃] occurs at rates of the order of 10^{-5} s⁻¹. Such slow rates, which were measured⁹ by time-dependent ¹³C n.m.r. studies, were attributed to a non-dissociative, intramolecular rearrangement of these 18-electron [M(CO)₅L] complexes, in which the M–L bond remains intact.

Our results, however, imply that even when the M–L bond is broken in an intramolecular metallotropic shift the $M(CO)_5$ group remains rigid. Thus the square pyramidal geometry of $M(CO)_5$ in these circumstances is intrinsically very stable,¹⁰ with no tendency to distort to a highly fluxional, formally seven-co-ordinate species at the transition state of the 1,2-metallotropic shift. Similarly it can be argued that there is no indication of the intermediacy of a 'naked'¹¹ $W(CO)_5$ moiety, which would be expected here to be fluxional *via* a trigonal bipyramidal geometry in a manner analogous to pentacarbonyliron.¹²

The 1,2-metallotropic shift is thus the lateral movement of a rigid square pyramidal $M(CO)_5$ unit relative to the ligand (Scheme 1). This conclusion, in addition to casting further light on the intramolecular nature of these 1,2-metallotropic shifts, has important mechanistic implications in metal carbonyl chemistry.

Received, 31st July 1986; Com. 1097

References

- 1 S. Aime and L. Milone, Progr. NMR Spectrosc., 1977, 11, 183.
- 2 S. Aime, Inorg. Chim. Acta, 1982, 62, 51.
- 3 B. D. Dombek and R. J. Angelici, J. Am. Chem. Soc., 1976, 98, 4110.
- 4 E. W. Abel, S. K. Bhargava, P. K. Mittal, K. G. Orrell, and V. Šik, J. Chem. Soc., Dalton Trans., 1985, 1561.
- 5 J. A. Connor, E. M. Jones, and G. K. McEven, J. Organomet. Chem., 1972, 43, 357.
- 6 E. W. Abel, T. P. J. Coston, K. G. Orrell, V. Šik, and D. Stephenson, J. Magn. Reson., in the press.
- 7 D. J. Darensbourg and B. J. Baldwin, J. Am. Chem. Soc., 1979, 101, 6447.
- 8 D. J. Darensbourg, R. Kudaroski, and W. Schenk, *Inorg. Chem.*, 1982, 21, 2488.
- 9 D. J. Darensbourg and R. L. Gray, Inorg. Chem., 1984, 23, 2993.
- 10 J. K. Burdett, 'Molecular Shapes, Theoretical Models of Inorganic Stereochemistry,' Wiley, New York, 1980, p. 189.
- 11 J. K. Burdett, J. M. Grzybowski, R. N. Perutz, M. Poliakoff, J. J. Turner, and R. F. Turner, *Inorg. Chem.*, 1978, 17, 147.
- 12 J. P. Jesson and P. Meakin, J. Am. Chem. Soc., 1973, 95, 1344.