Stereochemical Rigidity of the Square Pyramidal W(CO)₅ Moiety During 1,2-Metallotropic Shifts in Disulphide Complexes

Edward W. Abel, Ian Moss, Keith G. Orrell,* Vladimir Sik, and David Stephenson

Department of *Chemistry, The University, Exeter EX4 400, U. K.*

N.m.r. studies of the complex $[W(CO)_5(PhCH_2SSCH_2Ph)]$ have revealed the absence of any carbonyl group scrambling accompanying the tungsten-sulphur 1,2-metallotropic shift; this implies stereochemical rigidity, on the two-dimensional ¹³C dynamic n.m.r. timescale, of the square pyramidal $W(CO)$ ₅ unit during these intersulphur metal commutations.

Metal carbonyl scrambling is a widespread fluxional phenomenon in organometallic chemistry, and has been extensively studied by ^{13}C n.m.r. spectroscopy.^{1,2} In general, it occurs with ease in many bi-, tri-, and poly-metallic systems by a variety of mechanisms, most of which may be conveniently followed by standard dynamic n.m.r. techniques. Mononuclear systems of the type $[M(CO)_5L]$ do, however, appear to be stereochemically rigid at room temperature.¹ Nevertheless, since studies above ambient temperature have been limited by the thermal instabilities of many of the complexes, the existence of very slow high-energy carbonyl scrambling, such as occurs in $[W(CO)_5CS]$,³ cannot be discounted. We have now examined whether two-dimensional 13C n.m.r. exchange spectroscopy can reveal carbonyl group scrambling in a $[M(CO),L]$ system at a rate too slow to produce exchange broadening in its one-dimensional n.m.r. spectra.

We chose to study $[W(CO)_5(PhCH_2SSCH_2Ph)]$ since we wished to test, not simply for the existence of CO fluxionality, but also for any correlation of such fluxionality inside the $M(CO)$ ₅ moiety with the 1,2-metal commutation known to occur in such disulphide complexes.4 The complex was prepared by an established procedure,⁵ and initially studied by one-dimensional 1H n.m.r. spectroscopy at a variety of temperatures between 323 and 353 **K.** The methylene region of the spectrum revealed two sharp signals (δ 3.40 and 4.20; solvent CDC13) at **303 K** which underwent exchange broadening at higher temperatures owing to the 1,2-tungsten sulphur shift. Bandshape fittings were obtained in the usual way, and rate constants obtained (Table 1). Two-dimensional (2D) 1H **NOESY (EXSY)6** spectra obtained at below-ambient temperatures extended the range over which reliable *k* values could be computed. The resulting value of ΔG ^{\pm} (298.15 K) for the 1,2-shift process was 76.00 ± 0.09 kJ mol⁻¹ which compared closely with the value of 74.2 \pm 0.02 kJ mol⁻¹ previously obtained⁴ for the related complex $[W(CO)_5(Me_3SiCH_2 SSCH₂SiMe₃)$].

In order to obtain 2D 13C-{lH} **EXSY** spectra of $[W(CO)₅(PhCH₂SSCH₂Ph)]$, the complex was prepared from ¹³CO enriched hexacarbonyltungsten. Our disulphide complex contained a 27% enrichment of ¹³CO, this being assessed from the relative intensities of the individual components of

^a One-dimensional bandshape analysis. ^b Two-dimensional exchange spectroscopy. **c** Two-dimensional **13C-EXSY** spectra recorded at these temperatures contained *no* carbonyl cross-peaks.

the 13C carbonyl signals, due to singly and multiply labelled ¹³CO species (${}^{2}J_{\text{CC}} \approx 2.5$ Hz). High quality ¹³C-{¹H} **EXSY** spectra of the complex in the range 293 to 323 K consisted of diagonal carbonyl signals at **6** 196.68 [1J(183W--13C) 129.5 Hz] and 200.10 $[1J(183W-13C)$ 160.5 Hz due to cis- and transcarbonyl groups respectively, but contained no carbonyl cross-peaks. At these temperatures the rates of the 1,2-metal shifts were appreciable (Table 1), and intense carbonyl cross-peaks would have been produced if correlated CO scrambling was occurring during the process. The absence of such cross-peaks thus showed not only that the 1,2-shift fluxion was not correlated with any metal carbonyl movement, but that the $[M(CO)_5]$ unit itself was remarkably rigid, any cis-trans-CO exchange being too slow on the 2D 13C dynamic n.m.r. time-scale for detection. From the conditions used to obtain the 2D EXSY spectra,⁶ it is estimated that any rate constants for CO scrambling in the temperature range 293 to 323 K would have to be $\leq 10^{-2}$ s⁻¹ and ΔG^{\ddagger} for the process >90 **kJ** mol-1.

This result is compatible with the work of Darensbourg et $al.7-9$ which has established that the *cis-trans*-isomerism of selectively ¹³CO labelled complexes $[M(CO), PR_3]$ occurs at rates of the order of 10^{-5} s⁻¹. Such slow rates, which were measured9 by time-dependent 13C n.m.r. studies, were attributed to a non-dissociative, intramolecular rearrangement of these 18-electron $[M(CO)_5L]$ complexes, in which the M-L bond remains intact.

Our results, however, imply that even when the M-L bond is broken in an intramolecular metallotropic shift the $M(CO)_{5}$ group remains rigid. Thus the square pyramidal geometry of $M(CO)$ ₅ in these circumstances is intrinsically very stable,¹⁰ with no tendency to distort to a highly fluxional, formally seven-co-ordinate species at the transition state of the 1,2-metallotropic shift. Similarly it can be argued that there is no indication of the intermediacy of a 'naked'¹¹ $W(CO)_{5}$ moiety, which would be expected here to be fluxional via a trigonal bipyramidal geometry in a manner analogous to pentacarbonyliron. 12

The 1,2-metallotropic shift is thus the lateral movement of a rigid square pyramidal $M(CO)$ _s unit relative to the ligand (Scheme 1). This conclusion, in addition to casting further light on the intramolecular nature of these 1,2-metallotropic shifts, has important mechanistic implications in metal carbony1 chemistry.

Received, *31st July* 1986; *Corn. I097*

References

- **1 S. Aime and L. Milone,** *Progr.* **NMR** *Spectrosc.,* **1977, 11, 183.**
- **2 S. Aime,** *Inorg. Chim. Ada,* **1982, 62, 51.**
- **3 B. D. Dombek and R. J. Angelici, J.** *Am. Chem. SOC.,* **1976,98, 4110.**
- **4 E. W. Abel, S. K. Bhargava, P. K. Mittal, K. G. Orrell, and V. Sik, J.** *Chem. SOC., Dalton Trans.,* **1985, 1561.**
- **5 J. A. Connor, E. M. Jones, and G. K. McEven, J.** *Organomet. Chem.,* **1972, 43, 357.**
- **6 E. W. Abel, T. P. J. Coston, K. G. Orrell, V. Sik, and D. Stephenson, J.** *Magn. Reson.,* **in the press.**
- **7 D. J. Darensbourg and B. J. Baldwin, J.** *Am. Chem. SOC.,* **1979, 101,6447.**
- 8 D. J. Darensbourg, R. Kudaroski, and W. Schenk, *Inorg. Chem.*, **1982,21, 2488.**
- **9 D. J. Darensbourg and R. L. Gray,** *Inorg. Chem.,* **1984,23,2993.**
- **10 J. K. Burdett, 'Molecular Shapes, Theoretical Models of Inorganic Stereochemistry,' Wiley, New York, 1980, p. 189.**
- **11 J. K. Burdett, J. M. Grzybowski, R. N. Perutz, M. Poliakoff, J. J. Turner, and R. F. Turner,** *Znorg. Chem.,* **1978, 17, 147.**
- **12 J. P. Jesson and P. Meakin, J.** *Am. Chem. SOC.,* **1973, 95, 1344.**